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Received 31 May 1995 

Abstract. We study the effect of removing detailed balance from the axial next-nearest- 
neighbour king ( ~ N N I )  model on its phase diagram. Although the concepts of free energy ' 
or Gibbsian thermodynamical equilibrium no longer apply. we find numerically that the phase 
diagram is preserved evea when the interactiolls are completely unidirectional. We also find that 
the value of the multiphase point varies with the degree of asymmetry in the nrles. 

1. Introduction 

Even after a few decades of study, the understanding of cooperative systems whose dynamics 
lacks detailed balance remains in its infancy. This situation is not due to lack of effort, 
but rather is because most of the relatively simple concepts and tools developed for 
conventional equilibrium statistical mechanics no longer apply. In particular, the long-time 
asymptotic microstate probability distribution is no longer given by a simple Boltmann 
form expf-pH), where H is a simple (energy) function of the microstate and ,3 = T-' 
is the inverse temperature, nor does one have the concept of the free energy as a quantity 
whose minimization determines the macrostate. 

Detailed balance is always obeyed in closed systems. However, in many situations one is 
interested in studying only parts of a larger system, for example in biological reactions in the 
larger biosphere or for many growth problems. In such cases, detailed balance can no longer 
be assumed to hold generically. In fact, for many systems the effective absence of detailed 
balance is necessary to achieve complex behaviour; the propulsion of molecular motors 
is an example which has received attention recently [l]. Since the justification of most 
concepts in conventional statistical mechanics requires detailed balance, an understanding 
of the relevance of detailed balance in determining the character of macroscopic dynamical 
attractors should be very useful if one wishes to apply experience of conventional systems 
to systems without detailed balance. 

One of the key concepts of conventional statistical mechanics is that of phase transitions; 
that as the control parameters are varied the systems migrate into different macrostates. One 
of the simplest phase transitions is that of spontaneous symmetry-breaking in which the 
ergodicity consequential to high stochasticity in local dynamics is broken as the temperature 
is lowered, as for example in a transition from a paramagnet to ordered magnet. Another 
is a transition from one ordered phase to another as the interactions between particles 
are varied, for example ferromagnet to antiferromagnet as the sign of a nearest-neighbour 
exchange interaction is changed. Examples of both these simple types of phase transitions 
have also been~found in systems without detailed balance; for example in simple cellular 
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automata with directed rules,. (i) the paramagnet 10 ordered transition occurring as the 
degree of stochasticity is reduced in probabilistic cellular automata [2], (ii) the ordered- 
ordered transition occurring as the local rule is varied in deterministic coupled-map lattices 
and cellular automata 131. 

Effects of detailed balance appears to be difficult to predict. On the one hand, recent 
lattice gas automata (LGA) simulations have shown that the absence of detailed balance can 
lead to spontaneous symmetry breaking [4]. From a random configuration, in a LGA with 
an asymmetric collision table, stable system-size dynamical patterns form with a symmetry 
depending on the details of the initial configuration. Interestingly, these patterns are unstable 
under rules satisfying detailed balance. On the other hand, analytical results of asymmetric 
SK and related models predict that for a non-zero temperature, any deviation from detailed 
balance destroys the spin-glass phase [5 ] .  Numerical simulations indicate that this phase is 
resistant to a finite degree of asymmetry only at zero temperature [6]. 

In this paper we wish to consider a different type of phase transition, known for 
conventional systems but, as far as we are aware, unstudied for systems without detailed 
balance. This concerns transitions between ordered phases as the degree of stochasticity is 
varied, normally studied for conventional systems by consideration of the minimization of 
the free energy, a concept which no longer applies in the absence of detailed balance. Such 
transitions occur in conventional systems when the controlling interactions are frustrated, 
an example being the axial next-nearest-neighbour king (A"N1) model which exhibits a 
plethora of different ordered phases. 1n"this paper we consider the behaviour of an analogue 
of the A " N 1  model without detailed balance and show that the phenomenon of transitions 
between ordered phases as the stochasticity is varied continues to exist. 

N Mourseau and D Sherrington 

2. Detailed balance 

The presence of detailed balance forces is generally taken for granted when one studies 
physical systems. It has been proven, for example, that for both classical and quantum 
mechanical systems in isolation, detailed balance is satisfied 171. It has also been shown that 
an extended detailed balance can be defined when a symmetry breaking field is introduced. 
However, a large proportion of phenomena in nature takes place in an open environment, 
with constant apport of useful energy or reactants and elimination of decayed energy and 
other products. This phenomenon is particularly striking in reac.tions found in biological 
systems. In such situations, detailed balance is not required. For example, the synapses 
connecting neurons are thought to give a different weight depending on the direction of 
the interaction; in other words, the interaction matrix is not symmetric so the problem is 
not Hamiltonian. Other examples have been discussed recently in the context of propulsion 
of viruses and bacteria. It has been proposed that in order to be able to move around, 
these micro-organisms extract energy from the stochastic surrounding using a ratchet-like 
mechanism [ 11. 

For a system of king (two-state) spins, ui = 5 1 ,  i = 1 . . . N ,  obeyingrandom sequential 
stochastic dynamics, we can write the master equation 

When the transition matrix W,,. respects the detailed balance condition 

WdP:. = Wdop: (2) 
where p e  indicate the equilibrium probability distribution, it can be shown that the set of 
eigenfunctions is complete with orthogonal eigenvectors and real eigenvalues [7]. From 
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then, the problem becomes, at least formally, straightforward to solve by applying the 
techniques of linear algebra. However, for a generic system, W,, possesses no particular 
symmetry and therefore one cannot describe the solution in terms of eigenfunctions, 
depriving us from many analytical tools for the analysis. 

0 :  

3. A generalized A"NI model 

The model we choose to study is a generalization of the " N I  model. On a cubic lattice 
the ANNNI model is characterized by the Hamiltonian 

1 

where i is the layer index while j and 8 represent, respectively, the index and the nearest- 
neighbour directions inside the layers. Frustration is therefore present only along one 
direction with simple first-neighbour interaction between sites belonging to the same plane. 
This model was first introduced by Elliott in order to understand modulated magnetic 
materials IS]. Although there exists no exact solution for &e full phase diagram, it has been 
studied extensively by series expansion, mean-field analysis and Monte Carlo simulations. 
Its mean-field phase diagram (figure 1) presents an infinite number of commensurate phases 
separated, above the incommensurate line, by incommensurate phases forming an incomplete 
devil's staircase (see 19, 101 for reviews). 

In the absence of detailed balance, one can no longer write down a Hamiltonian. 
However, one can consider a dynamics in which the behaviour of any site ij is determined 
by a local field 

6 

. 
5 

L 

3 

1 

I 

Figure 1. Mean-field phase diagram of the ~ N I  model in three dimensions (taken from 
191).  the notation h n z n , .  . .n,) indicates a spin ordering which altemates n,  layers with 
average spin up, n2 down, ng up. . . . . ni (up for 1 odd. down for 1 even), n1 opposite to set 
1 etc. The doued curve on the diagram indicates a limiting curve above which there are also 

, incommensurate phases, which are not indicated explicitly. 
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only if 31- = 31, and Jz- = 32+ is the influence of any site on any other symmetric and 
given by 

N Moirsseau and D Sherrington 

hij = $ [ H ( ~ i j  = 1) -~H(u~ ,  = -l)]. (5) 

In particular, we shall consider a Glauber process which yields 

WtS = ~ c w k ( ? ‘ ) [ 6 ( ? ‘ -  Fk?)-d(?’-?)] 
k 

where k now labels a site, 

Wk(?’) = ;[I - tanh(flUihx(?’))] (7) 

 and I$@(?) = @(q, .. . , -q,. . . , U”). 

We parametrize the asymmetry in terms of  two measures E L ,  €2 defined by 

Jx* = (1 i €.J.& x = 1,2 .  (8) 

One can then describe the relative strength of the second-neighbour interaction by the 
ratio K = -&/&. At T = 0 for the perfect AN”[ model, a multiphase ratio K ,  separates 
the ground state stability of a fully ferromagnetic and the so-called (2) phase in which the 
planes order two up, two down, two up, etc and takes the value K ,  = 0.5. 

4. One-dimensional phase diagram 

In one dimension, we can argue that the corresponding K,  varies with E ~ .  In this case, 
ordered phases exist only at zero temperature but the value of K, remains at 0.5 for 
symmetric interactions. For E I  > K ,  thesign of the local field is completely determined by 
the nearest neighbour on the right of each spin. Although the probability of flipping this 
site is dependent on all first and second neighbours, its preferred orientation is controlled 
by one neighbour only. Starting with a (2) or a random phase, ,and moving systematically 
from right to left on the chain, it is easy to see that we end up in a ferromagnetic state. 
Updating in a random sequential way, we expect the formation of ferromagnetic domains in 
the long-time limit. As soon as €1 c K ,  all neighbours contribute in determining the sign of 
the local field and the equilibrium distribution should be the same as for the detailed balance 
case. We find similar behaviour for €2 > 1/K where it is the next-nearest neighbour on the 
right which completely determines the preferred orientation of each spin. 

Given that the multiphase point at ex = 0 is K, = 0.5, and that the are limited to 
a band of values from 0 to 1, only E ]  is expected to have an impact on K,. The phase 
diagram of the one-dimensional chain at zero temperature is given in figure 2 as a function 
of the asymmetry parameter E = €1 = e2. From E = 0 to E = 0.5, the multiphase point Kc 
remains at the detailed balance value. For larger 6 ,  it increases linearly with the asymmey. 

Because of the addition of neighbours in the planes, perpendicular to the axial direction 
and playing a stabilizing role, this result cannot be expected to remain quantitatively 
valid in higher dimensions. For a Hamiltonian system ( E ]  = q = 0), these neighbours 
would not change the behaviour of the model at zero temperature, but here the absence of 
detailed balance creates a dynamic asymptotic state even in this case. Nevertheless, this 
(one-dimensional) result hints at an asymmetry-dependent multiphase point in the three- 
dimensional model studied in the rest of the paper. 
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Figure 2. Variation of the multiphase ratio K, = 
-hJh as a function of e = q = EL for a one- 
dimensional chain. 
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5. Macroscopic solution 

It is possible to obtain an expression for the macroscopic magnetization per layer m, = 
l/N‘ E,, cq . by following the evolution of the probability distribution 

where the sum is over all possible configurations, N L  is the number of sites per layer, and 
the layers are identified by the Greek letters. Choosing equation (1) as the dynamics and 
taking a mean-field approximation, we obtain the usual mean-field dynamical equation [ I l l  

where the lattice structure and dimensionality enters only via the factor multiplying Jo. Here, 
we take a three-dimensional cubic lattice. If static equilibrium is reached, i.e. dm,/dt = 0. 
as it would be asymptotically in the case of a detailed balance system, for example, we find 
the usual equilibrium mean-field relation [12] 

but now, not necessarily with J, = J-a. 
Equation (10) is straightforward to integrate from any particular initial condition. It 

evolves rapidly to dynamical but spatially periodic solutions in m, with period depending 
on the choice of parameters. Its final states are also dependent on the initial configurations. 
Figure 3 presents snapshots of converged solutions at different temperatures with the same 
initial configuration, a slightly distorted (2) phase. These phases translate on the lattice 
at velocities depending on temperature and asymmetry. For all values of ex. solutions of 
this equation for different parameters give a series of phases similar to those found for 
the perfect A”NI model. However. since we lack a quantity to minimize we cannot select 
amongst the multiple steady state solutions to equation (10) one corresponding to the unique 
solution to the full model. The only way we have been able to identify the solutions is to 
use direct microscopic methods, i.e. Monte Carlo simulations. 
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Figure 3. Mean-field solution for the 
magnetization as a function of the hyer index 
in a 120-layer system with el = 0.5. €2 = 1 
and K = 0.55 at ksTJ3o = (a) 4.0, (b) 4.34. 
(c) 4.41. (d) 4.54 and (e) 5.14. The initial 
configuration in all cases is a slightly dirtoned 
(2) phase. 

6. Numerical results 

The usual method for solving the full ANNNI model with detailed balance, either analytically 
or numerically, is to calculate the free energy for different phases and to select the phase 
with the lowest one. Since such a procedure cannot be followed here, we had to resort 
to brute force numerical study and to try to look at systems big enough that influence of 
the boundary would be reduced as much as possible. This is, however, non-trivial; even 
the asymptotic state as the temperature tends to zero cannot be deduced a priori from 
global minimization. Even at finite temperature, when the transition rules are no longer 
deterministic. nothing guarantees that the system will tend towards a static macroscopic 
phase, let alone that it will be the same as for the corresponding Hamiltonian model. So 
the first task is to find the macrostate to which the system converges as we lower T. 

Simulated annealing provides us with a convenient procedure. Starting at a temperature 
high enough that the system is in the paramagnetic phase, we slowly tum the temperature 
down and let the system settle before continuing the cooling. If we wait a long time, we 
are guaranteed to find an equilibrium probability configuration and if we find the same 
final distribution from different starting points, we may consider this state as the unique 
distribution. We have performed such simulations on a 10 x 10 x 60 lattice with €1 = 0 
and €2 = 1 at points far away on both sides from K = 0.5 and found that, indeed, as the 
temperature is decreased the system goes to the ferromagnetic or (2)  phase as expected. 
However, it becomes difficult to use this method very close to the multiphase point because 
the relaxation times exceed the capabilities of our computers. Nevertheless, around K = 0.5, 
we can verify the stability of the selected initial phase at low temperature. Imposing the 
(2) phase for K below 0.5, we find that as we raise the temperature enough to overcome 
the barriers in the simulation time the system goes to a phase much closer to ferromagnetic 
than (2). We obtain the opposite behaviour starting with a ferromagnetic layer configuration 



Modified A”[ model 6563 

for K above 0.5, indicating that for these values of E, ,  K ,  represents the low-temperature 
multiphase point. 

If one is concerned only with simulating static equilibrium properties of systems with 
detailed balance, the specific simulational dynamics is irrelevant as long as it yields the 
correct asymptotic distribution P; c( exp(-pH(Z)). However, in the absence of detailed 
balance the choice of dynamics may have a non-negligible effect. We have therefore 
studied simulationally two different types of dynamics for our model, one characterized 
by the Metropolis algorithm, the other by that of Glauber; with detailed balance both yield 
the Boltzmann distribution asymptotically. In the Metropolis procedure, single spin flips 
Uk --f - 0 k  are tested and accepted if exp(-&hx) > p where p is a number chosen 
randomly in (0, 1) at each attempt. For Glauber dynamics, spins k are picked and their 
value ux subsequently chosen randomly with probability $[I -tanh(pukh,)]. In both cases, 
the selection of each site to update was made at random. A Monte Carlo timestep is defined 
as the average time interval before a site is revisited. 

Most simulation results presented here were performed on 10 x 10 x Z lattices with 
Z = 60 and a few control runs made with Z = 62 and 120. A large system size was taken 
in order to allow for the possibility of long periods. The value of the parameters studied was 
restricted to be relatively close to the multiphase point K, = 0.5 so that the length of phases 
would remain much smaller than the period of our box at least for the perfect A”N1 model. 
Starting at a relatively low temperature, in an ordered phase, we heated up the system slowly, 
allowing 40000 Monte Carlo stepskpin (MCSB) of relaxation before observing over the next 
10 000 MCS/S. As explained previously, the absence of detailed balance leads generally to a 
dynamical equilibrium, to a well defined periodic phase moving on the lattice with definite 
velocity. One cannot therefore perform's time average over magnetization per ,layer. We 
chose rather to average over the absolute value of the spatial Fourier transform of the 
magnetization per layer which should become constant as the system reaches its long-time 
state. 

Figure 4 shows the spatial Fourier transform at four temperatures for a 60-layer lattice 
relaxed using Glauber dynamics. At each temperature, only one peak dominates so the 
phase can be well defined by a single wavevector. The next set of figures presents the 
maximum wavenumber as a function of temperature in systems with and without detailed 
balance, updated using Metropolis (figure 5) and Glauber dynamics (figure 6). This quantity 
is obtained by averaging over the width of the peak shown in figure 4 where the width is 
taken as the point where the amplitude falls by a factor I/e .  As we vary &from 0 to 1 while 
keeping = 0. there is very little change happening with respect to the phase transitions: 

Figure 4. Wavenumber spectra of the spatial 
magnetization modulation in a 10 x IO x 60 system 

0 .1 2 .3 .4 .5 at K = 0.55 with ci  = 0 and $2 = I ,  at four different 
temperatures (given in normalized units $TI&). Wavenumber (Znfi) 
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Figure 5. Maximum wavenumber as a function of 
temperature for Z = 60, K = 0.55. The symbols 
are for a non-detailed balance system with €2 = 1 and 
f1 = 0. Forclarity, simulation resuls with BI = €2 = 0 
(the Hamiltonian interaction) me shown as a full line. 
Results were obtnined using the Metropolis algorithm. 
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Figure 7. Maximum wavenumber as a function of 
temperature for 2 = 60 (full curve), < = bZ~(fu11 
circle4 and Z = 120 (open circles), -hili 0.55 
with fz = 1 and €1 = 0. Results were obtained using 
the Metropolis algorithm. 
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Figure 6. Maximum wavenumber as a function of 
temperature for Z = 60, K = 0.55. The full line is 
for the Hamiltonian interaction and the full and open 
symbols are for 3 non-detailed balance system with 
h = I and. respectively. €1 = 0 and f 1 = 0.5. Results 
were obtained using Glauber dynamics. 

1c t _j - 
1 2 3 4 5 6 

knT/Jo 

Figure 8. Maximum wavenumber as a function of 
temperature for Z = 60, = 2. and 62 = f 
using Glauber dynamics. The open circles are for 
a ratio -&f& = 0.6 the full circles for a ratio -4/.fl = 1.05, and the open triangles for a ratio 
-32/J1  = 1.70. T h e s e s  of points end when the system 
reaches a paramagnetic state. 

transitions occur at temperatures very close to those found in the Hamiltonian model and 
the same plateaux are reached. One can explain this result by the fact that we keep the 
fundamental feature of the model; depending on the local configuration the first neighbour 
or the second neighbour interaction can take precedence over the other. We have performed 
these simulations for other values of g and what we obtain is  qualitatively similar although 
the transition temperatures to phases with shorter wavenumber tend to be lower as 6, is 
increased while keeping the ratio K constant as we can see in' figure 6. 

Size effects are examined in figure 7 where the variation of the period as a function of 
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Figure 9. Maximum wavenumber as a function of 
the ratio K for B = f1 = €2 = 0.95 and 7 = 1.50 
after a relaxation of 100000 timestepa. The full clrcles 
ire for (2) initial conhgurate and the open circles. a 
ferromagnetic initial state. Lines connecting the points 
are~for clarity and the parallel lines indicate the error 
margins on the multiphase point K,. 

Figure 10. Variation of the multiphase ratio K, = as a 
function of E = st = ~2 for a rhree-dimensional lattice. 
The mor b w  are as explained in the text and the cume 
is far clarity. 

temperature is shown for three different sizes (60, 62 and 120 layers) for €2 = 1 and € 1  = 0. 
Although the ftustration prevents the system with 62 layers from attaining the desired phase 
(2) at low temperature, the sequence of phases as well as the transition temperature seem to 
be in good agreement for all the sizes studied,indicating that these results are qualitatively 
size independent. 

Exploring the phase diagram at different K's  we find that particular periods in the 
magnetization per layer appear only for particular ranges of this ratio in qualitative accord 
with the behaviour shown in figure 1 for the system with detailed balance. Figure 8 presents 
results for E I  = 

As mentioned in section 3, we expect that the multiphase point K ,  will be dependent 
on the level of asymmetry. In one dimension and zero temperature, the value of K, remains 
unchanged for €1 c 0.50 and from this point, increases linearly with the.asymmetry. The 
procedure to determine~the multiphase point is the following. Starting with a ferromagnetic 
or a (2)  phase, we fix E = cI = E~ and let the system relax for 100000 MCS. Because 
the phase transition between the two phases is first order, we expect to have some hang-up 
so that even after long relaxation the final results will depend on the initial configuration. 
This will be particularly true close to the multiphase point. An example of the type of 
results obtained is shown in figure 9. Around the multiphase point, the slowing down of 
the dynamics is such that both phases remain stable, limiting the accuracy with which we 
can identify this point. For E = 0.95, this region is between K = 0.74 and 0.82. Complete 
results are presented in figure 10. The behaviour of K, in three dimensions is therefore 
qualitatively equivalent to what happens in one dimension although it is quantitatively 
less affected by the asymmetry. Results plotted in this last figure have been obtained 
at several different temperatures. As a general rule, the higher E is, the lower is the 
temperature used in the run because the system remains less stable. Too high a temperature 
and the equilibrium states are no longer the zero-temperature phases but something more 

3 2 and €2 = J. 
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complicated from which we cannot extract the information we want. If the relaxation 
temperature is too low, the region of stability of the two phases widens to a point where 
it becomes meaningless. Results tiom figure 10 indicate that even for the completeiy 
asymmehic interaction 61 = €2 = 1, the system will present a series of commensurate 
phases as the temperature is varied. 

7. Conclusion 

It is clear that detailed balance is not needed to create complex phase diagrams such as 
one finds in frustrated systems like the ANNNI model. Even in dynamical systems, the 
presence of temperature, noise or other external stochasticity can induce phase transition 
to new ordered states through some competitive process that cannot be easily formalized. 
Moreover, OUT studies of a modified ANNNI model have shown that a system with stochastic 
local-field dynamics, even without the symmetry necessary for detailed balance, can exhibit 
a sequence of  phases close to those of the corresponding Hamiltonian system. The latter 
can therefore provide useful insight. On the other hand, we also know that new phases, 
for example cycles and chaotic solutions, are also possible for appropriate models without 
detailed balance 13, 13, 141, so that many questions still remain concerning the effects of 
the removal of detailed balance in frushated systems. 
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