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Abstract. We study the effect of removing detailed balance from the axial next-nearest-
neighbour Ising (ANNNI) model on its phase diagram. Although the concepts of free energy
or Gibbsian thermodynamical equilibrivm no longer apply, we find numerically that the phase
diagram is preserved even when the interactions are completely unidirectional. We also find that
the value of the multiphase point varies with the degree of asymmetry in the rules.

1. Introduction_

Even after a few decades of study, the understanding of cooperative systems whose dynamics
lacks detailed balance remains in its infancy. This situation is not due to lack of effort,
but rather is because most of the relatively simple concepts and tools developed for
conventional equilibrium statistical mechanics no longer apply. In particular, the long-time
asymptotic microstate probability distribution is no longer given by a simple Boltzmann
form exp{—pBH), where H is a simple (energy) function of the microstate and 8 = T~
is the inverse temperature, nor does one have the concept of the free energy as a quantity
whose minimization determines the macrostate.

Detailed balance is always obeyed in closed systems. However, in many situations one is
interested in studying only parts of a larger system, for example in biological reactions in the
larger biosphere or for many growth problems. In such cases, detailed balance can no longer
be assumed to hold generically. In fact, for many systems the efféctive absence of detailed
balance is necessary to achieve complex behaviour; the propulsion of molecular motors
is an example which has received attention recently [1]. Since the justification of most
concepts in conventional statistical mechanics requires detailed balance, an understanding
of the relevance of detailed balance in determining the character of macroscopic dynamical
attractors should be very useful if one wishes to apply experience of conventional systems
to systems without detailed balance.

One of the key concepts of conventional statistical mechanics is that of phase wansitions;
that as the control parameters are varied the systems migrate into different macrostates. One
of the simplest phase transitions is that of spontaneous symmetry-breaking in which the
ergodicity consequential to high stochasticity in [ocal dynamics is broken as the temperature
is lowered, as for example in a transition from a paramagnet to ordered magnet. Another
is a transition from one ordered phase to another as the interactions between particles
are varied, for example ferromagnet to antiferromagnet as the sign of a nearest-neighbour
exchange interaction is changed. Examples of both these simple types of phase transitions
have also been found in systems without detailed balance; for example in simple cellular
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automata with directed rtules,. (i) the paramagnet to ordered trausition occurring as the
degree of stochasticity is reduced in probabilistic cellular automata [2], (ii) the ordered—
ordered transition occurring as the local rule is varied in deterministic coupled-map lattices
and cellolar antomata {31.

Effects of detailed balance appears to be difficult to predict. On the one hand, recent
lattice gas automata (LGA) simulations have shown that the absence of detailed balance can
lead to spontaneous symmetry breaking [4]. From a random configuration, in a LGA with
an asymmetric collision table, stable system-size dynamical patterns form with a symmetry
depending on the details of the initial configuration. Interestingly, these patterns are unstable
under rules satisfying detailed baiance. On the other hand, analytical results of asymmetric
SK and related models predict that for a non-zero temperature, any deviation from detailed
balance destroys the spin-glass phase [5]. Numerical simulations indicate that this phase is
resistant to a finite degree of asymmeiry only at zero temperature [6].

In this paper we wish to consider a different type of phase transition, known for
conventional systems but, as far as we are aware, unstudied for systems without detailed
balance. This concerns transitions between ordered phases as the degree of stochasticity is
varied, normally studied for conventional systems by consideration of the minimization of
the free energy, a concept which no longer applies in the absence of detailed balance. Such
transitions occur in conventional systems when the controlling interactions are frustrated,
an example being the axial next-nearest-neighbour Ising (ANNNI) model which exhibits a
plethora of different ordered phases. In this paper we consider the behaviour of an analogue
of the ANNNI model without detailed balance and show that the phenomenon of transitions
between ordered phases as the stochasticity is varied continues to exist.

2. Detailed balance

The presence of detailed balance forces is generally taken for granted when one studies
physical systems. It has been proven, for example, that for both classical and quantum
mechanjcal systems in igolation, detailed balance is satisfied [7], It has also been shown that
an extended detailed balance can be defined when a symmetry breaking field is introduced.
However, a large proportion of phenomena in nature takes place in an open environment,
with constant apport of useful energy or reactants and elimination of decayed energy and
other products. This phenomenon is particularly striking in reactions found in biological
systems. In such situations, detailed balance is not required. For example, the synapses
connecting neurons are thought to give a different weight depending on the direction of
the interaction; in other words, the interaction matrix is not symmetric so the problem is
not Hamiltonian. Other examples have been discussed recently in the context of propulsion
of viruses and bacteria. It has been proposed that in order to be able to move around,
these micro-organisims extract energy from the stochastic surrounding using a ratchet-like
mechanism [1].

For a system of Ising (two-state) spins, oy = %1, = 1... N, obeying random sequential
stochastic dynamics, we can write the master equation

dp:({eh

_]?rdf‘_} = c'o"pt({o',})- (1)
When the transition matrix W,, respects the detailed balance condition

Wa’a’ng = Wg'a Pf, (2)

where p® indicate the equilibrium probability distribution, it can be shown that the set of
eigenfunctions is complete with orthogonal eigenvectors and real eigenvalues [7]. From
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then, the problem becomes, at least formally, straightforward to solve by applying the
techniques of linear algebra. However, for a generic system, W, possesses no particular
symmetry and therefore one cannot describe the solution in terms of eigenfunctions,
depriving us from many analytical tools for the analysis.

3. A generalized ANNNI model

The model we choose to study is a generalization of the ANNNI model. On a cubic lattice
the ANNNI model is characterized by the Hamiltonian

H =13 " hoijoi+ ) [N0ij01-1) + 20102 (3)

ij8 ij
where / is the layer index while j and § represent, respectively, the index and the nearest-
neighbour directions inside the layers. Frustration is therefore present only along one
direction with simple first-neighbour interaction between sites belonging to the same plane.
This model was first introduced by Elliott in order to undersiand modulated magneiic
materials [8]. Although there exists no exact solution for the full phase diagram, it has been
studied extensively by series expansion, mean-field analysis and Monte Carlo simulations.
Its mean-field phase diagram (figure 1) presents an infinite number of commensurate phases
separated, above the incommensurate line, by incommensurate phases forming an incomplete

devil’s staircase (see [9, 10] for reviews).
In the absence of detailed balance, one can no longer write down a Hamiltonian.
However, one can consider a dynamics in which the behaviour of any site ij is determined

by a local field

hij = Z JoGijas + S1-0i1j + Jip0igj + Ja-Giy; + Sy Giray 4
&

kBT”U paramagnetic

0 i 1 : . : ! 1 ' I

L]
0 02 a4 0.4 0.8 1.0 =310

Figure 1. Mean-field phase diagram of the axnNI model in three dimensions (taken from
[93). "The notation (nynens...ny) indicates a spin ordering which alternates ny layers with
average spin up, nz down, nz up, ..., ny {up for [ odd, down for [ even), n; opposite to set
! etc. The dotted curve on the diagram indicates a limiting corve above which there are also
incommensurate phases, which are not indicated explicitly.
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only if Ji— = Ji4 and Jp_ = Joy is the influence of any site on any other symmetric and
given by

h‘_}_ = _12_ [H(Jij — 1) ——H(JU = —-1)] . (5)

In particular, we shall consider a Glauber process which yields

Wozr = 3 wp(@)E@E — Fid) — 8@ — &) ©)
P
where & now labels a site,
wi (&) = L{1 — tanh(Ba R (5"))] @
‘and F,&(¢) = ®(oy,..., ~Tky ..., O

We parametrize the asymmetry in terms of two measures €y, €; defined by
Jex = (1 £ )Ty x=12. (8

One can then describe the refative strength of the second-neighbour interaction by the
ratio K = —Jo/J;. At T = 0 for the perfect ANNNI model, a multiphase ratio K, separates
the ground state stability of a fully ferromagnetic and the so-called {2) phase in which the
planes order two up, two down, two up, etc and takes the value K, = 0.5.

4. One-dimensional phase diagram

In one dimension, we can argue that the corresponding K. varies with ¢,. In this case,
ordered phases exist only at zero temperature but the value of K. remains at 0.5 for
symmetric interactions. For €; > K, the sign of the local field is completely determined by
the nearest neighbour on the right of each spin. Although the probability of fiipping this -
site is dependent on all first and second neighbours, its preferred orientation is controlied
by one neighbour only. Starting with a {2) or a random phase, and moving systematically
from right to left on the chain, it is easy to see that we end up in a ferromagnetic state.
Updating in a random sequential way, we expect the formation of ferromagnetic domains in
the long-time limit. As soon as €; < X, all neighbours contribute in determining the sign of
the local field and the equilibrium distribution should be the same as for the detailed balance
case. We find similar behaviour for €3 > 1/K where it is the next-nearest neighbour on the
right which completely determines the preferred orientation of each spin.

Given that the muitiphase point at ¢, = 0 is X, = 0.5, and that the &, are limited to
a band of values from 0 to 1, only «; is expected to have an impact on K,. The phase
diagram of the one-dimensional chain at zero temperature is given in figure 2 as a function
of the asymmeiry parameter € = ¢; = €. From € = 0 to ¢ = 0.5, the multiphase point K,
remains at the detailed balance value. For larger €, it increases linearly with the asymmetry.

Because of the addition of neighbours in the planes, perpendicular to the axial direction
and playing a stabilizing role, this result cannot be expected to remain gquantitatively
valid in higher dimensions. For a Hamiltonian system {(¢; = & = 0), these neighbours
would not change the behaviour of the model at zero temperature, but here the absence of
detailed balance creates a dynamic asymptotic state even in this case. Nevertheless, this
(one-dimensional) resuit hints at an asymmetry-dependent multiphase point in the three-
dimensional model studied in the rest of the paper.
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5. Macroscopic solution

It is possible to obtain an expression for the macroscopic magnetization per layer m, =
1/NL Y, o 0:- by following the evolution of the probability distribution

Plimo}) =Y pr(@) [ | 6 (e ~ ma(E)) ©)
{e} o

where the sum is over all possible configurations, Ny is the number of sites per layer, and
the layers are identified by the Greek letters. Choosing equation (1) as the dynamics and
taking a mean-field approximation, we obtain the usual mean-field dynamical equation [11]

dm,

dt

= tanh ﬁ(4.foma +3 J,,_«m},) — Mg (10)

y#0

where the lattice structure and dimensionality enters only via the factor multiplying Jo. Here,
we take a three-dimensional cubic lattice. If static equilibrium is reached, i.e. dm,/dt =0,
as it would be asymptotically in the case of a detailed balance system, for example, we find
the usual equilibriurn mean-field relation [12]

My = tanhﬁ(‘iigma + Z Jy_gm,,) ' (11)
¥#)

but now, not necessarily with J, = J_,.

Equation (10) is straightforward to integrate from any particular initial condition. It
evolves rapidly to dynamical but spatially periadic solutions in m, with period depending
on the choice of parameters. Its final states are also dependent on the initial configurations.
Figure 3 presents snapshots of converged solutions at different temperatures with the same
initial configuration, a slightly distorted (2) phase. These phases translate on the lattice
at velocities depending on temperature and asymmetry. For all values of ¢, solutions of
this equation for different parameters give a series of phases similar to those found for
the perfect ANNNI model. However, since we lack a quantity to minimize we cannot select
amongst the multiple steady state solutions to equation (10) one corresponding to the unique
solution to the full model. The only way we have been able to identify the solutions is to

use direct microscopic methods, i.e. Monte Carlo simulations.
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Figure 3. Mean-field solution for the

1l ! (e) magnetization as a function of the layer index

a W\ﬁmwm in a 120-layer system with ¢) = 0.5, &2 = 1

1 and K = 0.55 at kpT/Jp = (a) 4.0, (5) 4.34,

1 (c) 4.44, (d) 4.54 and (¢} 5.14, The initial

0 au 40 60 80 mo 120 configuration in all cases is a slightly distonted
Layar {2) phase.

6. Numerical results

The usual method for solving the full ANNNI model with detailed balance, either analytically
or numerically, is to calculate the free energy for different phases and to select the phase
with the lowest one. Since such a procedure cannot be followed here, we had to resort
to brute force numerical study and to try 10 look at systems big enough that influence of
the boundary would be reduced as much as possible. This is, however, non-trivial; even
the asymptotic state as the temperature tends to zero cannot be deduced a priori from
global minimization. Even at finite temperature, when the trapsition rules are no longer
deterministic, nothing guarantees that the system will tend towards a static macroscopic
phase, let alone that it will be the same as for the corresponding Hamiltonian model. So
the first task is to find the macrostate to which the system converges as we lower T,
Simulated annealing provides us with a convenient procedure. Starting at a temperature
high enough that the system is in the paramagnetic phase, we slowly turn the temperature
down and let the system settle before continuing the cooling. If we wait a long time, we
are guaranteed to find an equilibrium probability configuration and if we find the same
final distribution from different starting points, we may consider this state as the unique
distribution. 'We have performed such simulations on a 10 x 10 x 60 lattice with g =0
and €3 = 1 at points far away on both sides from K = 0.5 and found that, indeed, as the
ternperature is decreased the system goes 1o the ferromagnetic or (2) phase as expected.
However, it becomes difficult to use this method very close to the multiphase point because
the relaxation times exceed the capabilities of our computers. Nevertheless, around K = 0.5,
we can verify the stability of the selected initial phase at low temperature. Imposing the
(2} phase for K below 0.5, we find that as we raise the temperature enough io overcome
the barriers in the simulation time the system goes to a phase much closer to ferromagnetic
than (2). We obtain the opposite behaviour starting with a ferromagnetic layer configuration
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for K above 0.5, indicating that for these values of €., K, represents the low-temperature
multiphase point.

If one is concerned only with simulating static equilibrium properties of systems with
detailed balance, the specific simulational dynamics is ifrelevant as long as it yields the
correct asymptotic distribution P; o exp(—8H (&)). However, in the absence of detailed
balance the choice of dynamics may have a non-negligible effect. We have therefore
studied simulationally two different types of dynamics for our model, one characterized
by the Metropolis algorithm, the other by that of Glauber; with detailed balance both yield
the Boltzmann distribution asymptotically. In the Metropolis procedure, single spin fiips
o — —oy are tested and accepted if exp(—porhy) > p where p is a number chosen
randomly in (0, I) at each attempt. For Glauber dynamics, spins & are picked and their
value o), subsequently chosen randomly with probability %[1 —tanh{Bozh;)]. In both cases,
the selection of each site to update was made at random. A Monte Carlo timestep is defined
as the average time interval before a site is revisited.

Most simulation results presented here were performed on 10 x 10 x Z lattices with
Z = 60 and a few control runs made with Z = 62 and 120. A large system size was taken
in order to allow for the possibility of long periods. The value of the parameters studied was
restricted to be relatively close to the multiphase point K = 0.5 so that the length of phases
would remain much smaller than the period of our box at least for the perfect ANNNI model.
Starting at a relatively low temperature, in an ordered phase, we heated up the system slowly,
allowing 40000 Monte Carlo steps/spin (MCS/S) of relaxation before observing over the next
10000 McCs/S. As explained previously, the absence of detailed balance leads generally to a
dynamical equilibrium, to a well defined periodic phase moving on the lattice with definite
velocity. One cannot therefore perform-a time average over magpetization per layer. We
chose rather to average over the absolute value of the spatial Fourier transform of the
magnetization per layer which should become constant as the system reaches its long-time
state.

Figure 4 shows the spatial Fourier transform at four temperatures for a 60-layer lattice
relaxed using Glauber dynamics. At each temperature, only one peak dominates so the
phase can be well defined by a single wavevector. The next set of figures presents the
maximum wavenumber as a function of temperature in systems with and without detailed
balance, updated using Metropolis (figure 5) and Glauber dynamics (figure 6). This quantity
is obtained by averaging over the width of the peak shown in figure 4 where the width is
taken as the point where the amplitude falls by a factor 1/e. As we vary 5 from 0 to 1 while
keeping €, = 0, there is very little change happening with respect to the phase transitions:

‘Das_lllllillllllllilllll
= e —— T =15
Z o2 b e T = 2%
£ F -—— T =30
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£ 016 (= "
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5 005 — -
r Figure 4.  Wavenumber spectra of the spatial
o Cmess e magnetization modulation in a 10 x 10 x 60 system
0 1 4 at K = 0.55 with ¢; = 0 and ¢; = I, at four different

2 3 .
Wavenumber (2n/L) temperatures (given in normalized units kg T/ Jp).
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transitions occur at temperatures very close to those found in the Hamiltonian model and
the same plateaux are reached. One can explain this result by the fact that we keep the
fundamental feature of the model; depending on the local configuration the first neighbour
or the second neighbour interaction can take precedence over the other. We have performed
these simulations for other values of €, and what we obtain is qualitatively similar although
the transition temperatures to phases with shorter wavenumber tend to be lower as € is
increased while keeping the ratio K constant as we can see in figure 6.

Size effects are examined in figure 7 where the variation of the period as 2 function of
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ferromagnetic initial state. Lines connecting the points

are for clarity and the parallel lines indicate the error

margins on the multiphase point £..

temperature is shown for three different sizes (60, 62 and 120 layers) fore; = 1 and ¢y = 0.
Although the frustration prevents the system with 62 layers from attaining the desired phase
{2) at low temperature, the sequence of phases as well as the transition temperature seem to
be in good agreement for all the sizes studied. indicating that these results are qualitatively
size independent.

Exploring the phase diagram at different X’s we find that particular periods in the
magnetization per layer appear only for particular ranges of this ratio in qualitative accord
with the behaviour shown in figure 1 for the system with detailed balance. Figure & presents
results for ¢ = 3 3 and €3 = % -

As ment:oned in section 3, we expect that the mu]nphase point K, will be dependent
on the level of asymmetry. In one dimension and zero ternperature, the value of K, remains
unchanged for ¢; < 0.50 and from this point, increases linearly with the asymmeiry. The
procedure to determine the multiphase point is the following. Starting with a ferromagnetic
or a (2) phase, we fix ¢ = € = € and let the system relax for 100000 Mcs. Because
the phase transition between the two phases is first order, we expect to have some hang-up
so that even after long relaxation the final results will depend on the initial configuration.
This will be particularly true close to the multiphase point. An example of the type of
results obtained is shown in figure 9. Around the multiphase point, the slowing down of
the dynamics is such that both phases remain stable, limiting the accuracy with which we
can identify this point. For ¢ = 0.93, this region is between X = 0.74 and 0.82. Complete
results are presented in figure 10. The behaviour of K, in three dimensions is therefore
qualitatively equivalent to what happens in one dimension although it is quantitatively
less affected by the asymmetry. Results plotted in this last figure have been obtained
at several different temperatures. As a general rule, the higher ¢ is, the lower is the
temperaiure used in the run because the systemn remains less stable. Too high a temperature
and the equilibrium states are no longer the zero-temperature phases but something more
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complicated from which we cannot extract the information we want. If the relaxation
temperature is too low, the region of stability of the two phases widens to a point where
it becomes meaningless. Results from figure 10 indicate that oven for the compleiely
asymmetric interaction ¢; = & = 1, the system will present a series of commensurate
phases as the temperature is varied.

7. Conclusion

It is clear that detailed balance is not needed to create complex phase diagrams such as
one finds in frustrated systems like the ANNNI model. Even in dynamical systers, the
presence of temperature, noise or other external stochasticity can induce phase transition
to new ordered states through some competitive process that cannot be easily formalized.
Moreover, our studies of a2 modified ANNNI mode! have shown that a system with stochastic
local-field dynamics, even without the symmetry necessary for detailed balance, can exhibit
a sequence of phases close to those of the corresponding Hamiltonian system. The latter
can therefore provide useful insight. On the other hand, we also know that new phases,
for example cycles and chaotic solutions, are also possible for appropriate models without
detailed balance [3, 13, 14], so that many questions still remain concerning the effects of
the removal of detailed balance in frustrated systems.
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